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ABSTRACT: A novel “turn-on” fluorescent trypsin detection
platform dependant on carbon dot-MnO2 (CD-MnO2)
nanocomposites and ascorbic acid-loaded apoferritin
(APOAA) was fabricated. The detection mechanism relied
on trypsin-catalyzed enzymolysis of APOAA, which released
ascorbic acid (AA) as a reducing agent to disintegrate the
MnO2 nanosheets, causing the recovery of the fluorescence of
CDs. An excellent performance and high sensitivity of trypsin
determination were observed with a detection limit (LOD) of
0.3411 ng/mL. This work provides us with a unique strategy
for trypsin detection in human serum samples, which reveals
the potential applications in clinical detection.
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1. INTRODUCTION

Trypsin is a key alkaline protease, which widely exists in many
vertebrates’ digestive systems, and is able to cleaving peptides
at the C-terminal side of arginine or lysine residues.1−4 Besides,
trypsin is of importance in regulating the pancreatic exocrine
function, and its imbalance will lead to many diseases, like
pancreatitis, vesicular fibrosis, pancreatic carcinoma, etc.5−7

The level of trypsin in urine or serum is regarded as a
biomarker for the diagnosis of pancreatic diseases.8 Con-
sequently, accurate detection of trypsin with a high selectivity
and low detection limit exhibits a vital clinical diagnosis and
therapeutic significance. So far, many methods have been
reported for detecting trypsin activity, such as the mass
spectrometry,9 enzyme-linked immunosorbent assay
(ELISA),10 gel electrophoresis,11 electrochemical analysis,12

chemiluminescence spectrometry,13,14 photoelectrochemistry
analysis,15 colorimetric spectrometry,16−18 and fluorescence
spectrometry.19−21 Among that, fluorescence spectroscopy has
gained a lot of attention on account of its low background
noise, high sensitivity, and easy operation. The fluorescent
determination of trypsin on the basis of quantum dots and Au
nanoclusters has been reported in the past.19,20 However,
current methods are still plagued with several problems, such
as the toxicity of quantum dots, the insensitivity of “turn-off”
detection, and the requirement of numerous reagents.4,19,22 To
this end, the detection strategy of trypsin still requires

technique improvement to offer an effective practical assess-
ment.
Carbon dots (CDs) have recently attracted considerable

interests resulting from their excellent photostability, low
toxicity, easily fabrication, favorable biocompatibility, and good
aqueous solubility.23,24 In particular, the fluorescence of CDs
could be quenched by MnO2 nanosheets via fluorescence
resonance energy transfer (FRET). MnO2 nanosheets with a
wide absorption range from 250 to 600 nm exhibit a major
peak at 374 nm, making them serve as an efficient
quencher.25,26 Additionally, owing to the strong oxidation
ability, MnO2 nanosheets could be decomposed to Mn2+ by
ascorbic acid (AA).24 Herein, we proposed a strategy that
protein cage encapsulated AA was enzymatically hydrolyzed;
releasing AA would lead to the disintegration of MnO2, which
realized the sensitive detection of a specific enzyme in an
indirect way. It has been reported that apoferritin (APO) could
load AA via an assembly−disassembly method and could also
be catalytically hydrolyzed by trypsin.7 Therefore, ascorbic
acid-loaded apoferritin (APOAA) could be utilized as an
assistant agent and then combined with CD-MnO2 nano-
composites for the detection of trypsin.
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In this work, we prepared CD-MnO2 nanocomposites by
electrostatic interaction and designed the CD-MnO2-APOAA
system (CMA) for trypsin detection. APOAA was used as a
bifunctional agent for both the storage of AA and enzymatic
substrate of trypsin. After the APOAA was catalytically
hydrolyzed by trypsin, the released AA would reduce MnO2
to Mn2+. Then, the MnO2 nanosheets were destroyed, which
resulted in the fluorescence recovery of CDs. Therefore, by
evaluating the fluorescence intensity of CDs, a sensitive
detection platform for the determination of trypsin was
established.

2. EXPERIMENTAL SECTION
2.1. Reagents and Materials. Sterculia lychnophora was

obtained from Tongrentang Medicine Cooperation (China). HCl
and NaOH were bought from Sinopharm Chemical Reagent Co., Ltd.
(China). Ascorbic acid (AA), bovine serum albumin (BSA), bovine
hemoglobin (Hb), and human serum albumin (HAS) were supplied
from Aladdin Chemical (China). Tetramethylammonium hydroxide,

manganese chloride tetrahydrate (MnCl2·4H2O), apoferritin (APO),
glucose (Glu), alkaline phosphatase (ALP), glucose oxidase (GOx),
pepsin, and trypsin were purchased from Sigma-Aldrich (USA).
Phosphate buffer solution (PBS, pH = 7.8) was applied for trypsin
incubation and fluorescent detection. All reagents were analytical
grade and used directly. The solutions were prepared with deionized
water.

2.2. Preparation of APOAA. The APOAA was prepared via the
assembly−disassembly method documented in previous reports with
a minor modification.15,27 APOAA is prepared by adjusting the pH for
loading AA into APO. (The details are in the Supporting
Information.) The gained APOAA was saved in brown bottles for
further experiments.

2.3. Preparation of CD-MnO2 Nanocomposites. The CDs
were synthesized according to a hydrothermal method described in
our previous report.24 In brief, sterculia lychnophora was peeled and
ground to get sterculia lychnophora seed powder. Afterward, the
powder was dissolved in H2O, and the mixture proceeded via the
hydrothermal process of heating for 1 h at 100 °C. Then the gained
CDs in solution were filtered with a 0.22 μm filtration membrane and
kept in a dark room for the next steps. Next, the MnO2 nanosheets

Scheme 1. Schematic Illustration of Quantitative Trypsin Detection

Figure 1. TEM images of (a) CDs, (b) MnO2 nanosheets, (c) CD-MnO2 nanocomposites, and (d) disaggregated MnO2 nanosheets.
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were prepared by referring to the literature.28 The details are in the
Supporting Information.
Finally, the CD-MnO2 nanocomposites were prepared as follows:

200 μL of various concentrations of MnO2 nanosheet solutions was
mixed with 200 μL of CDs solution. The total volume of the CD-
MnO2 solution was adjusted to 1 mL using PBS buffer for the next
analysis.
2.4. Detection of Trypsin. For detecting trypsin, in detail, 100

μL of APOAA was added into CD-MnO2 nanocomposites to prepare
CMA. Afterward, 100 μL of trypsin at various concentrations was
mixed with the aforementioned CMA solution, and the mixture was
incubated for 15 min at 37 °C. Finally, the fluorescent signal of CMA
was recorded over a range from λ = 320 nm to λ = 680 nm.

3. RESULTS AND DISCUSSION

3.1. Principle of Detection. A novel fluorescence turn-on
method for detecting trypsin activity in a homogeneous system
was successfully developed based on an enzyme-catalyzed in
situ release of AA. The principle of the detection was displayed
in Scheme 1. The freshly synthesized negatively charged MnO2
nanosheets can easily adsorb on the surface of aminated CDs
through electrostatic interaction. The formation of CD-MnO2
nanocomposites could efficiently cause the fluorescence
quench of CDs via FRET. In particular, the APOAA prepared
via the assembly−disassembly method could be catalytically
hydrolyzed by trypsin to release AA. Then the released AA
would destroy the structure of MnO2 nanosheets by reducing
MnO2 to Mn2+, yielding the recovered fluorescence of the
CDs. It is remarkable to point out that the mechanism relied
on the fluorescence changes caused by hydrolysis of APOAA,
thus realizing the detection of trypsin according to monitoring
the fluctuation of the CD fluorescence intensity.29

3.2. Characterization and Feasibility. The morphology,
size, and microstructure of synthesized nanomaterials were
observed by the transmission electron microscopy (TEM)
images. As shown in Figure 1a, the prepared CDs are uniform
and monodispersed with a quasi-spherical shape. Figure 1b
shows a typical TEM image of MnO2 nanosheets, which

presents an obvious 2D sheet structure with occasional folds
and wrinkles. Figure 1c manifests CD-MnO2 nanocomposites
were successfully formed by electrostatic interaction between
negative MnO2 nanosheets and aminated CDs. The MnO2

nanosheets could be disintegrated by the reduction of AA,
which was released from APOAA by adding trypsin. Successful
reduction of MnO2 to Mn2+ was confirmed by Figure 1d.
Figure S1a displays the TEM image of APOAA. APOAA has a
nanocage structure with an interior and exterior diameter of 8
± 1.2 nm and 12 ± 1.5 nm, which is similar with the pure
apoferritin.30 As shown in Figure S1b, the ζ potentials of APO
and APOAA are −17.9 ± 1 mV and −12.9 ± 0.5 mV,
respectively.
In addition, X-ray photoelectron spectroscopy (XPS) was

employed to determine the elemental analysis and surface
composition of CDs-MnO2. The full XPS survey spectrum of
CDs-MnO2 (Figure S2) indicates the existence of C, O, N, and
Mn elements. The C 1s spectrum in Figure 2a indicates three
peaks at 284.2 eV (sp3), 285.3 eV (sp3), and 287.2 eV (sp2),
which are ascribed to the CC, CC; CH, CN/C
OH; and CO/COC, respectively. The N 1s spectrum
(Figure 2b) confirms that the peaks at 399.3 eV and 400.6 eV
are corresponding to CNC and (C)3N, respectively.
The O 1s spectrum (Figure 2c) exhibits four peaks at 530.2,
531.3, 532.5, and 534.1 eV, respectively. The Mn 2p spectrum
(Figure 2d) shows two peaks located at 642.0 and 653.9 eV,
and they are assigned to Mn 2p3/2 and Mn 2p1/2, respectively.
These results are in accord with the previous reports.31,32

The optical properties of CDs and MnO2 nanosheets were
also investigated by UV−vis absorbance and fluorescence
spectra. The red dotted line in Figure 3 shows that CDs have a
UV absorption peak at 345 nm and exhibit a strong blue
emission peak at 455 nm (black solid line). It should be
pointed out that the absorption spectrum of MnO2 exhibits a
wide band ranging from 270 to 600 nm (black dotted line),
which overlaps basically with the fluorescence emission

Figure 2. XPS spectra of CDs-MnO2 in the (a) C 1s, (b) N 1s, (c) O 1s, and (d) Mn 2p regions.
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spectrum of CDs and thus can act as an ideal energy
acceptor.33

The stability of MnO2 was investigated by the ζ potentials of
MnO2 nanosheets at different periods. Figure S3 shows that
the ζ potential of newly synthesized MnO2 nanosheets is
−41.1 ± 1 mV and that the ζ potential of MnO2 nanosheets
stored for 6 months is −39.9 ± 0.5 mV, which proved that the
MnO2 nanosheets is stable.
To further demonstrate the feasibility of the proposed

strategy for trypsin detection, the fluorescence spectra
measurement was performed. As shown in Figure 4, the

prepared CDs exhibit a strong fluorescence emission peak at
455 nm (line a in Figure 4), which could be quenched by
MnO2 nanosheets based on FRET (line b in Figure 4). The

fluorescence of CD-MnO2 nanocomposites would not be
influenced by APOAA because the AA could be fully confined
in APOAA (line c in Figure 4). With the addition of trypsin,
the fluorescence of CMA is recovered (line d in Figure 4).
Trypsin could catalytically hydrolyze APOAA to release AA.
Consequently, MnO2 nanosheets would be reduced into Mn2+

and disintegrate rapidly, which contributed to the recovery of
the fluorescence of CDs.

3.3. Optimization of Detection Parameters. To get the
excellent detection performance, we explored the effects of
various conditions including MnO2 concentration, reaction
pH, time, and temperature. The aforementioned parameters,
which might affect the fluorescence signal response of CMA,
were necessary to be optimized.
The concentration of MnO2 is highly significant for

designing CMA, which would be first investigated. MnO2
nanosheets with various concentrations were added into 200
μL of the CD solution, followed by adding APOAA and
trypsin. Subsequently, the fluorescence recovery value, F − F0,
of CMA was recorded. (F and F0 represent the fluorescence
intensities of CMA in the presence and absence of trypsin,
respectively.) As shown in Figure S4a, the F − F0 value rapidly
enhances with the increased MnO2 nanosheet concentration
from 0 to 40 μg/mL, reaching a maximum value at 40 μg/mL
and then the signal decreasing with the further increase of the
MnO2 nanosheet concentration. The reason for this phenom-
enon is mainly that APOAA can only load a deterministic
amount of AA so that the release of AA could not completely
disintegrate MnO2 nanosheets when MnO2 nanosheets are
present at a high concentration. Therefore, based on the above
results, the optimal MnO2 nanosheet concentration (40 μg/
mL) was selected for the further detection.
In addition, the effect of pH was explored by varying PBS

(pH = 7.0, 7.5, 7.8, 8.0, 8.5, and 9.0). As shown in Figure S4b,
at the pH of 7.8, F − F0 displays the maximum, which
illustrated that trypsin exhibits a maximum proteolytic activity
at this pH. Then pH 7.8 was chosen for the further assay. The
reaction time between CMA and trypsin is also an important
parameter, as demonstrated in Figure S4c; F − F0 increased
gradually within 15 min and then reaches to a stable stage
during the following 30 min. Thus, 15 min was chosen as the
optimized reaction time for the following studies. Reaction
temperature, a critical aspect that affects enzyme activity, was
also investigated, and the results were shown in Figure S4d.
After trypsin was added into the CMA solution, F − F0
increases with the increasing temperature from 25 to 37 °C,

Figure 3. UV spectra of CDs (red dotted line) and MnO2 nanosheets
(black dotted line) as well as the fluorescence emission spectrum of
CDs (black solid line).

Figure 4. Fluorescence emission spectra of (a) CDs, (b) CD-MnO2
nanocomposites, (c) CMA in the absence of trypsin, and (d) CMA in
the presence of trypsin.

Figure 5. (a) Fluorescence emission spectra of CMA in the presence of various trypsin concentrations (0−100 μg/mL). (b) Relationship between
the fluorescence recovery value F − F0 of CMA and the trypsin concentration. The inset graph shows a linear standard plot between the
fluorescence recovery value and the trypsin concentration. (The letter “C” in log C means the trypsin concentration. F0 and F are the fluorescence
intensities of CMA in the absence and presence of trypsin, respectively.)
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while the fluorescence intensity decreases gradually by further
increasing the temperature, which might be ascribed to the
decrease of trypsin activity at higher temperatures. Therefore,
37 °C was chosen as the appropriate temperature for detecting
trypsin.
3.4. Performance for Trypsin Detection. Under the

optimized conditions, the performance of the current strategy
for quantitative determination of trypsin was investigated. As
illustrated in Figure 5a, the fluorescence peak of CMA located
at 455 nm recovers gradually with the increasing concen-
trations of trypsin in the range 0−100 μg/mL. Figure 5b shows
that F − F0 exhibits an excellent linear relationship to the
trypsin’s concentrations ranging from 1 to 500 ng/mL, and the
linear regression equation is F − F0 = 1.3214 C (ng/mL) +
205.2248 (R2 = 0.9932). The detection limit of trypsin was
estimated to be 0.3411 ng/mL, according to the 3σ rule. These
results demonstrate that the current strategy was more
sensitive compared to most of the previous reported methods
for trypsin determination (Table S1).
In addition to sensitivity, selectivity is another necessary

factor for an originally designed detection system in order to
apply it in a real sample for potential applications. To evaluate
the specificity of the current detection system for trypsin, the
fluorescent responses of CMA to trypsin and several potential
interfering compounds (corresponding concentrations listed in
Figure 6), including BSA, BH, HSA, glucose, ALP, GOx, and

pepsin, were monitored. As shown in Figure 5, only trypsin
could increase the fluorescence of CMA, while other proteins
could not hydrolyze APOAA and thus lead to the release of
AA. The result indicates that the designed fluorescence
detection system indeed possesses a high selectivity toward
trypsin, which may be directly applied to detect trypsin in real
samples.
3.5. Trypsin Detection in Serum Samples. To explore

the practical application of the developed detection system in
complex biological samples (common concentration of trypsin
in healthy human serum = 4.1−7.4 ng/mL),34 the assay for
trypsin detection in healthy human serum samples was
conducted. The serums were provided by the People Hospital
of Qufu. The experimental procedures were carried out by a
standard addition method.35 To be specific, MnO2 nanosheet
solution, CDs, and APOAA were mixed to prepare CMA.
Afterward, a serum sample diluted 100 times was added into

CMA solution for 15 min at 37 °C to measure the
fluorescence. Next, trypsin with different concentrations was
added in the mixed solution, and the mixture was incubated for
15 min to detect the fluorescence signal. From Table S2, it
could be seen that the analytical recoveries ranges from 96% to
103%, which indicates that the developed method indeed has
the potential applicability for detecting trypsin in real
biological samples.

4. CONCLUSION
To sum up, we have developed a novel strategy to detect
ultrasensitive trypsin based on the fluorescence “turn-on” of
CMA. The detection mechanism is dependent on trypsin-
catalyzed enzymolysis of APOAA, and the released AA acts as a
reducing agent to disintegrate the MnO2 nanosheets, resulting
in the recovery of the fluorescence of CDs. The developed
method for the detection of trypsin has a line range from 1 to
500 ng/mL with a detection limit of 0.3411 ng/mL. Moreover,
the strategy exhibits excellent performance for trypsin
detection in human serum samples, which revealed the
potential applications in clinical detection.
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