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In this study, a composite nanosheet array (Co-MOF/TM) was developed by in-situ growing the cobalt-based metal-
organic framework (Co-MOF) on titanium mesh (TM) to fabricate a non-enzymatic electrochemical sensor for detec-
tion of H2O2 released from living cells. The amperometric current in cyclic voltammetry (CV) enhanced linearly
with the increase of H2O2 concentration. Due to the unique properties of Co-MOF, the proposed sensor showed excel-
lent H2O2 detection performance, including low detection limits (0.25 μM, S/N=3), wide linear range (1–13,000 μM,
R > 0.995), high sensitivity (98.75 μA mM−1 cm−2), fast response within 3 s, and high selectivity in PBS solution.
More importantly, the proposed electrode can be used to in situ sensing H2O2 released formA549 cells. This work pro-
vides a newdesign strategy of nonenzymatic electrochemical sensingmethod for amperometric determination ofH2O2

in biological environment and also shows high perspective for sensing other biomolecules using other active MOFs as
electrocatalytic electrodes.
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1. Introduction

Hydrogen peroxide (H2O2) plays an important role in physiological pro-
cess, its concentration is recognized as an essential physiological parameter
[1]. Abnormal concentration level of H2O2 in living cells can cause the ac-
cumulation of oxidative stress, which can further lead to various diseases
including cancer, diabetes, neurodegenerative, Alzheimer's, Parkinson's
and Huntington's diseases [2–5]. Therefore, the monitoring of H2O2 re-
leased from living cells is of significance for both physiological and patho-
logical investigations [6,7]. Up to now, a number of analytical techniques
have been reported for H2O2 detection, such as fluorescence, colorimetry,
high-performance liquid chromatography (HPLC), titrimetry, chemilumi-
nescence, cell imaging and electrochemistry sensors [8–14]. In comparison
with other methods for H2O2 detection, electrochemical techniques show
attractive attention due to their good sensitivity and selectivity, easy oper-
ating, fast response and cost-effective instrumentation [15].

Although high sensitivity and desirable selectivity have been achieved
with enzymatic detection of H2O2 based on electrocatalytic sensors, their
inherent drawbacks, such as intrusive chemical and thermal instability of
the enzyme, severely hinder their practical applications [16]. Therefore,
non-enzymatic electrocatalytic sensors have been gained attractive atten-
tion in biological detection due to their characteristics of high stability
and reliability, as well as good lifetime of modified electrodes [17,18]. To
date, numerous non-enzymatic electrocatalytic sensors based on various
in816@hotmail.com. (L. Lu).
materials have been reported for the sensing of H2O2 with satisfactory re-
sults, such as noble metals, transition metals, carbon materials. However,
there are still some problems existed on these sensors, including high
cost, easily poisoned by the adsorbed intermediates, and so on [19,20].
Therefore, it is significant and attractive to establish non-enzymatic electro-
chemical sensors with properties of high sensitivity, desirable selectivity,
good reliability, low cost and electrode poisoning resistance for detection
of H2O2.

Being one kind of new functional materials, metal–organic frameworks
(MOFs) formed by joining metal ions with organic links through
coordinate-covalent bond, have received great attentions for wide use in
gas, luminescence, sensors and catalysis, due to their unique structural
properties such as porous structure and high specific surface area [21,22].
Furthermore, many literatures reported that the MOFs formed by Co2+ as
the metal ion showed obvious catalysis activity [23–25]. Inspired by
these characteristics of Co-MOFs, we envisaged that the electrodemodified
with Co-basedMOFs can act as electrocatalysts for non-enzymatic detection
of H2O2. Firstly, rich unsaturated metal sites of Co2+ can provide catalytic
active centers [26]. Secondly, the uniform porous structure of theMOFs has
size-selective effect [27], which will prevent interference molecules and
cells from adsorbing into the pores of theMOFs, thereby minimize the elec-
trode poisoning. Thirdly, owing to the large surface area of the MOFs, the
target molecules of H2O2 can be absorbed on their numerous unsaturated
metal sites, facilitating the catalytic reaction [28].
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Herein, we designed a Co-MOF nanosheet array supported on Ti mesh
(Co-MOF/TM) as a modified electrode for detection of H2O2 released
from living cells. The Co-MOF was synthesized by coordination of Co2+

with terephthalic acid, which showed properties of good stability, high po-
rosity, large surface area, and rich unsaturated Co2+ sites. With the support
of the Ti mesh, the nanosheet-structural Co-MOF enhanced its electrical
conductivity and catalytic activity owing to the surface electronic defects.
Therefore, the constructed electrode in this study possesses good electrical
conductivity than previously reported MOFs and shows good electrochem-
ical performance due to the fast electron transfer as well as the sensitive re-
sponse to the target. Furthermore, the detection of the trace amount of
H2O2 secreted from living cells was successfully performed with this
biosensor.

2. Experimental

2.1. Materials and reagents

CoCl2·6H2O was supplied by Xiya Reagent Co., Ltd. terephthalic acid
(TPA), sodium dihydrogen phosphate (NaH2PO4), disodium hydrogen
phosphate (Na2HPO4), ascorbic acid (AA), dopamine (DA), uric acid
(UA), were supplied by Sigma-Aldrich (Shanghai, China), and
N,N-Dimethyl formamide (DMF) was supplied by Sinopharm Chemical Re-
agent Beijing Co., Ltd. The ultrapurewater used throughout all experiments
through a Millipore system. All reagents were analytical reagent grade and
used as received without further purification.

2.2. Preparation of Co-MOFs nanosheets array

The Co-MOF/TM was prepared by one-step solvothermal method ac-
cording to the reported literature [29]. Briefly, CoCl2·6H2O (0.238 g) and
TPA (0.166 g) were dissolved into 35 mL DMF with vigorous stirring for
10 min. Next, 2.5 mL ethanol and 2.5 mL ultrapure water were slowly
added separately and stirred for 30 min. After that, the above solution
was transferred into a 50 mL Teflon-lined stainless-steel autoclave with a
piece of Ti mesh (2 × 4 cm), keeping 125 °C for 12 h. After cooling to
room temperature naturally, collected the product andwashed it with ultra-
pure water for three times. With drying at 60 °C for 4 h, the Co-MOF/TM
was obtained.

2.3. Characterizations

X-ray diffraction (XRD) patterns were recorded with the Panalytical
X-ray Diffractometer Model X pert3 employing Cu Kα radiation (λ =
1.5406 Å). Scanning electron microscope (SEM) measurements were re-
corded on a XL30 ESEM FEG scanning electron microscope at an accelerat-
ing voltage of 20 kV. X-ray photoelectron spectroscopy (XPS) data was
collected on a Thermo ESCALAB 250XI x-ray photoelectron spectrometer
using Mg as the exciting source.

2.4. Electrochemical measurements

Electrochemical experiments measurements were carried out on an
electrochemical workstation (CHI 660E) with a standard three electrode
system. The supporting electrolyte is 0.1 M PBS (pH = 7.4). Co-MOF/
TM, graphite electrode and Ag/Agcl electrode were employed as working
electrode, counter electrode and reference electrode, respectively. Note
that all experimental data were carried out at room temperature.

3. Results and discussion

3.1. Characterization of the co-MOF/TM

The synthesized Co-MOF was firstly confirmed by XRD. As shown in
Fig. 1a, the XRD patterns of the synthesized Co-MOF/TM in this study
show good consistency with that of the simulated one, which indicated
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that the Co-MOF was successfully composited with TM, and the crystalline
of it remains well after composition. Fig. 1b shows the SEM image of
Co-MOF/TM, the tightly packed nanosheets stacked together and grown
on the bare TM. The energy-dispersive X-ray (EDS) elemental mapping
analysis of Co-MOF/TM confirms the existence of Co, C and O elements
in the product and those elements distribute in the whole nanoarray uni-
formly. The X-ray photoelectron spectroscopy (XPS) survey spectrum of
Co-MOF/TM can further confirm the existence of Co, C and O elements
(Fig. 1c). As revealed in Fig.1d, the binding energies (BEs) at 797.5 and
781 eV can be indexed to Co 2p1/2 and Co 2p3/2 regions, respectively
[30]. The peak at 786.8 and 804.1 eV are well fitted with two shakeup sat-
ellites (identified as “Sat.”) [31]. These evidences can certify that the exis-
tence of Co2+.

3.2. Electrochemical performance of co-MOF/TM nanosheets

To identify the properties of electrochemical biosensor, we measured
the performance of Co-MOF/TM electrode with typical three-electrode
setup for detecting H2O2. As shown in Fig. 2a, the cyclic voltammetrys
(CVs) of TM and Co-MOF/TM were investigated in 0.1 M PBS (pH =
7.4), which measured in the absence and presence of 3 mM H2O2 at a
scan rate of 50 mV s−1. Bare TM (curves 1 and 2) shows a nearly similar
current density in the absence and presence of H2O2, indicating that this
electrode is electrochemically inert for the detection of H2O2. By contrast,
the reduction current density of the Co-MOF/TM electrode (curves 3 and
4) presents notably increased after adding H2O2, indicating that the ob-
tained Co-MOF/TM electrode is promising for H2O2 detection. Fig. 2b
shows the CVs responses of the Co-MOF/TM under different H2O2 concen-
tration from 1 to 7 mM. The cathode-current densities enhanced with the
increasing H2O2 concentration, which further indicated the sensing ability
of Co-MOF/TM towards H2O2. In order to research the electrode kinetics,
the effect of scan rate on the CVs response was investigated. As plotted in
Fig. 2c, the response current of reduction peak rose with the increasing of
scan rate in the range of 30 to 200mV s−1. The electrocatalytic mechanism
can be depicted as follows according to the reports [32]:

Co−MOF@TMþ H2O2 þ e−→Co−MOF@TM−OHads þ OH− ð1Þ

Co−MOF@TM−OHads þ e−→Co−MOF@TMþ OH− ð2Þ

2OH− þ 2Hþ→2H2O ð3Þ

The amperometric responses of Co-MOF/TM to H2O2 at various applied
potentials were investigated to determine the optimum working potential.
As shown in Fig. S1, the amperometric response of Co-MOF/TM enhanced
significantly with the increasing of the absolute value of the applied poten-
tial in the presence of 1 mM H2O2. As we all know, the higher applied po-
tential was employed, the severer interference will be suffered. And there
was a satisfactory amperometric response when the applied potential was
−0.4 V. Therefore,−0.4 V was selected as the optimumworking potential
in this study.

Once the working potential was selected, the sensing performance of
the Co-MOF-TM to H2O2 was to be investigated. Fig. 3a exhibits the amper-
ometric response curve of the Co-MOF/TM electrode to H2O2 concentra-
tions, which changed with consecutive step from 0 μm to 1.3 mM in
0.1 M PBS at an applied potential of −0.4 V. It can be seen from Fig. 3a,
the current shows apparently stepwise increase with successive addition
of H2O2. As being plotted in Fig. 3b, the calibration curve of the current re-
sponse vs H2O2 concentration is in the range of 1 μM to 1.3 mM. There are
two linear calibration plots corresponding to the low (1–310 μM) and me-
dium (0.31–1.3 mM) concentration ranges. The two linear calibration
plots are in good fit with the regression equations. Furthermore, the limit
of detection was estimated to be 0.25 μM (S/N = 3), suggesting that the
proposed Co-MOF/TM biosensor possesses superior electrochemical detec-
tion ability. The stability of the Co-MOF/TM biosensor is evaluated by re-
cording successive CV responses of 1.0 mM H2O2 20 times. The results



Fig. 1. (a) XRD pattern of the simulated Co-MOF and the synthesized Co-MOF/TM; (b) SEM image and EDS elemental mapping of Co-MOF/TM. (c) XPS survey spectrum for
Co-MOF/TM. (d) XPS spectra of Co-MOF/TM in the Co 2p region.

Fig. 2. (a) CVs of bare TM (curves 1 and 2) and Co-MOF/TM (curves 3 and 4) in the absence and presence of 3 mMH2O2 in 0.1M PBS (scan rate: 50mV s−1) at a scan rate of
50mV s−1. (b) CVs of Co-MOF/TM in 0.1MPBSwith varyingH2O2 concentrations at a scan rate of 50mV s−1. (c) CVs obtained at Co-MOF/TM in 0.1MPBSwith 1mMH2O2

at different scan rates from 20 to 200 mV s−1.
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showed that the current density only showed slight decline during multiple
cycles in 0.1 M PBS containing 1.0 mM H2O2. The relative standard devia-
tion (RSD) of testing on 6 different Co-MOF/TMelectrodes is 0.63%and the
RSD of 6 parallel measurements is 0.91%, respectively. These results sug-
gested the satisfying stability and repeatability of the Co-MOF/TM as the
working electrode.

3.3. Analysis of real sample assay

The anti-interference property is a major concern for nonenzymatic bio-
sensors to detection H2O2. Thus, the common electroactive species, includ-
ing uric acid (UA), dopamine (DA), ascorbic acid (AA) and NaCl were
chosen to verify the anti-interference performance of Co-MOF/TM. As
shown in Fig. 4a, except H2O2, none of these interfering substances cause
any observable change in the amperometric current for the proposed sen-
sor, which indicated that the Co-MOF/TM has good selectivity towards
H2O2. Furthermore, the detection of the trace amount of H2O2 secreted
3

from living cells was successfully performed with this developed sensor.
We chose A549 cells as model cells and Phorbol-12-myristate-13-acetate
(PMA) as stimulant to make cells produce H2O2 [33]. As shown in
Fig. 4b, when PMA was added to 20 mL PBS containing 4 × 107 A549
cells (pH = 7.4), the amperometric current response was significantly en-
hanced, while the cells without being treated with PMA or PMA without
cells had no signal. This phenomenon demonstrated that the recorded cur-
rent came from the responsewith H2O2, which released from the A549 cells
with the stimulation of PMA.

4. Conclusion and perspective

In conclusion, a composite nanosheet array of Co-MOF/TM was devel-
oped by in-situ growing Co-MOF on TM to fabricate a non-enzymatic elec-
trochemical sensor for detection of H2O2 released from living cells. Due to
the unique properties of Co-MOF, the proposed sensor showed high sensi-
tivity and selectivity to H2O2. Moreover, when the developed sensor was



Fig. 3. (a) Amperometric response of Co-MOF/TM to the successive addition of H2O2 in 0.1M PBS. The inset shows the amperometric response of H2O2 at low concentration.
(b) Calibration curve of current response vs. H2O2 concentration.

Fig. 4. (a) Amperometric response of Co-MOF/TM under the addition of 1 mM H2O2 followed by some common interferences in 0.1 M PBS. (b) Amperometric response of
Co- MOF/TM to the stimulation in 0.1 M PBS with and without A549 cells.
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applied to monitoring H2O2 released from A495 cells, satisfactory results
were achieved. The results of this study showed high perspective for sens-
ing other biomolecules using other active MOFs as electrocatalytic
electrodes.
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