站点地图联系我们

当前位置: 网站首页>>研究方向>>导师简介>>正文
导师简介
渠凤丽教授简介
2021-01-18 02:21 相美豪 

 

渠凤丽,教授

曲阜师范大学 化学与化工学院 教授、青年长江学者

邮件:fengliquhn@hotmail.com

教育背景

2003.09-2008.06 湖南大学 分析化学专业 博士

1999.09-2003.07 曲阜师范大学 化学专业 学士

工作经历

2014.12-至今 曲阜师范大学化学化工学院,教授

2010.12-2014.12 曲阜师范大学化学化工学院,副教授

2019.02-2020.02 国家自然科学基金委,流动编制项目主任

2013.06-2014.08 美国普林斯顿大学,访问教授

2008.10-2009.10 法国国家科学研究中心,博士后

研究领域

  生物传感&纳米探针:酶传感、核酸传感、癌症及重大疾病标志物分析在生物分子固定化、纳米生物传感界面构建、细胞生化分析等方面具有丰富的研究经验。开发了多种新型具有高灵敏度、高选择性的生物传感器,促进了生物分析化学和纳米分析化学的学科发展,为重要生物小分子及疾病标志物的检测提供了灵敏高效的分析技术。

人才称号

1. 长江学者青年专家 (2020 年)

2. 山东省泰山学者青年专家(2019 年)

3. 山东省有突出贡献的中青年专家(2015 年)

主持科研项目

1. 国家自然科学基金面上基金:内标型上转换酶纳米探针的构建及缺血性脑卒中疾病相关酶活性定量检测及成像分析应用研究(No. 2177508964 万元,2018.01-2021.12),项目负责人

2. 国家自然科学基金面上基金:表面增强荧光纳米复合薄膜可控制备及高灵敏生物传感方法研究(No. 2137507680 万元,2014.01-2017.12),项目负责人。

3. 山东省自然科学基金优秀青年基金:高灵敏荧光生物传感方法研究 (No. ZR2017JL01030 万元,2017.08-2020.08),项目负责人

4. 国家自然科学基金青年基金:介孔溶胶凝胶薄膜电化学可控制备新方法及相关核酸适体生物传感器研究(No. 2100504719 万元,2011.01-2013.12),项目负责人

5. 山东省重点研发计划:基于石墨烯的电化学免疫传感器及微流控芯片用于前列腺癌的早期诊断(No. 2015GSF12103110 万元,2016.01-2017.12),项目负责人

6. 山东省大型仪器设备升级改造项目:地中海贫血基因突变分子传感新方法研究(No.2011SJGZ236 万元,2011.10-2012.10),项目负责人

7. 山东省优秀中青年科学家奖励基金:核酸适体电化学生物传感方法研究(No. BS2010SW0124 万元,2009.09-2012.09),项目负责人

科研奖励

1. 中国分析测试学会科学技术奖二等奖(排名第一,2017 年)

2. 第十届山东省青年科技奖(独立,2015 年)

3. 山东省自然科学奖三等奖(排名第一,2013 年)

4. 山东省高等学校优秀科研成果奖一等奖(排名第一,2013 年)

5. 山东省高等学校优秀科研成果奖三等奖(排名第一,2012 年)

6. 山东省软科学优秀成果奖一等奖(排名第一,2012 年)

主要学术任职和社会兼职

1. 山东省石墨烯产业知识产权保护联盟秘书长

2. 山东鲁泰控股集团分子新材料研发高级顾问

3. 山东省青联委员

4. 山东省科协委员

教学情况

  主讲《分析化学 》、《分析化学实验 》等本科生核心课程。近五年,完成本科课堂教学563 课时,覆盖 562 名学生。参编《化工专业内容资源库》,负责光分析法基本概念和原子光谱发射分析两章内容。

研究生指导情况

  指导已毕业硕士研究生 9 人,在读博士研究生 1 人,在读硕士研究生 10 人。指导研究生获得山东省研究生优秀科技创新成果奖 (2 人)、硕士研究生国家奖学金 (5 人)、山东省优秀硕士论文(2 人)。

论文目录

  迄今共发表通讯作者或第一作者 SCI 论文 87 篇,SCI 高被引论文(Top 1%24 篇,其中热点论文(Top 0.1%10 篇,SCI 他引 4000 余次。

[1] L. Guo, M. S. Liang, X. L. Wang, R. M. Kong, G. Chen, L. Xia *, F. L. Qu*, The tongs role of L-histidine: a strategy of grasping Tb3+ by ZIF-8 to design sensors for monitoring anthrax biomarker on-the-spot, Chem. Sci., 2020, 11, 2407-2413.

[2] H. Wang, X. L. Wang, M. S. Liang, G. Chen, R. M. Kong, L. Xia*, F. L. Qu*, A boric acid functionalized lanthanide metal-organic framework as a fluorescence turn-on probe for selective monitoring of Hg2+ and CH3Hg+, Anal. Chem., 2020, 92, 3366-3372.

[3] W. S. Kong, X. X. Guo, M. Jing, F. L. Qu*, L. M. Lu*, Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS2 nanorod array as signal matrix and Ag/Zn MOF nanozyme as multifunctional amplifier, Biosens. Bioelectron., 2020, 150, 111875-111881.

[4] X. X. Guo, J. H. Wu, L. Xia, M. H. Xiang, F. L. Qu*, J. Li, CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinas, Sci. China Chem., 2020, 63 1012-1018.

[5] X. M. Li, W. S. Kong, X. Qin*, F. L. Qu*, L. M. Lu*, Self-powered cathodic photoelectrochemical aptasensor based on in-situ synthesized CuO-Cu2O nanowire array for detecting prostate specific antigen, Microchimica Acta, 2020, 187, 325-333.

[6] X. L. Tu, F. Gao, X. Ma, J. Zou, Y. F. Yu, M. F. Li, F. L. Qu*, X. G. Huang, L. M. Lu*, Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high performance electrochemical sensing platform for sensitive detection of carbendazim pesticide, J. Hazard. Mater., 2020, 396, 122776-122784.

[7] X. L. Tu, Y. Xie, F. Gao, X. Ma, X. Lin, X. G. Huang*, F. L. Qu*, L. Ping, Y. F. Yu, L. M. Lu*, Self  template synthesis of flower-like hierarchical graphene/copper oxide@copper(II) metal-organic framework composite for the voltammetric determination of caffeic acid, Microchimica Acta, 2020, 187, 258-265.

[8] F. Gao, X. L. Tu, X. Ma, Y. Xie, J. Zou, X. G. Huang, F. L. Qu*, Y. F. Yu, L. M. Lu*, NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection,Talanta, 2020, 215, 120891-120898.

[9] X. Ma, X. L. Tu, F. Gao, Y. Xie, X. G. Huang, C. Fernandez, F. L. Qu*, G. B. Liu, L. M. Lu*, Y. F. Yu, Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin, Sens. Actuators B: Chem., 2020, 309, 127815-127824.

[10] W. S. Kong, F. L. Qu*, L. M. Lu*, A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen, Anal. Bioanal. Chem., 2020, 412, 841-848.

[11] Q. Q. Tan, R. R. Zhang, G. Y. Zhang, X. Y. Liu, F. L. Qu*, L. M. Lu*, Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+, Anal. Bioanal. Chem., 2020, 412, 1317-1324.

[12] X. X. Guo, W. C. Yi, F. L. Qu*, L. M. Lu*, New insights into mechanisms on electrochemical N2 reduction reaction driven by efficient zero-valence Cu nanoparticles, J. Power Sources, 2020, 448, 227417-227422.

[13] X. Ma, D. A. Chen, X. L. Tu, F. Gao, Y. Xie, R. Y. Dai, L. M. Lu*, X. Q. Wang, F. L. Qu*, Y. F. Yu, X. G.Huang, G. B. Liu, Ratiometric electrochemical sensor for sensitive detection of sunset yellow based on three  dimensional polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-beta cyclodextrin, Nanotechnology, 2019, 30, 475503-475512.

[14] L. Guo, Y. Liu, R. M. Kong, G. Chen, Z. Liu, F. L. Qu*, L. Xia*, W. H. Tan, A metal-organic framework as selectivity regulator for Fe3+ and ascorbic acid detection, Anal. Chem., 2019, 91, 12453-12460.

[15] Y. Xie, X. L. Tu, X. Ma, Q. W. Fang, G. B. Liu, R. Y. Dai, F. L. Qu*, Y. F. Yu, L. M. Lu*, X. G. Huang, A CuO-CeO2 composite prepared by calcination of a bimetallic metal-organic framework for use in an enzyme  free electrochemical inhibition assay for malathion, Microchimica Acta, 2019, 186, 567-575.

[16] H. T. Du, X. Y. Zhang, Z. Liu, F. L. Qu*, A supersensitive biosensor based on MoS2 nanosheet arrays for the real-time detection of H2O2 secreted from living cells, Chem. Commun., 2019, 55, 9653-9656.

[17] L. Guo, Y. Liu, R. M. Kong, G. Chen, H. Wang, X. L. Wang, L. Xia*, F. L. Qu*, Turn-on fluorescence detection of β-glucuronidase using RhB@MOF-5 as an ultrasensitive nanoprobe, Sens. Actuators B: Chem.,2019, 295, 1-6.

[18] W. S. Kong, Q. Li, L. Xia, X. M. Li, H. Sun, R. M. Kong*, F. L. Qu*, Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods, Microchimica Acta, 2019, 186, 490-498.

[19] X. Q. Luan, H. T. Du, Y. Kong, F. L. Qu*, L. M. Lu*, A novel FeS-NiS hybrid nanoarray: an efficient and durable electrocatalyst for alkaline water oxidation, Chem. Commun., 2019, 55, 7335-7338.

[20] X. X. Guo, S. P. Liu, M. H. Yang, H. T. Du, F. L. Qu*, Dual signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor receptor-2 detection, Biosens. Bioelectron., 2019, 139, 111312-111317.

[21] Q. Q. Tan, W. S. Kong, H. Sun, X. Qin*, F. L. Qu*, Fluorometric turn-on detection of ascorbic acid based on controlled release of polyallylamine-capped gold nanoclusters from MnO2 nanosheets, Microchimica Acta, 2019, 186, 282-288.

[22] X. Ma, F. Gao, G. B. Liu, Y. Xie, X. L. Tu, Y. Z. Li, R. Y. Dai, F. L. Qu*, W. M. Wang, L. M. Lu*, Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel, Microchimica Acta, 2019, 186, 291-299.

[23] Y. Xie, X. L. Tu, X. Ma, M. Q. Xiao, G. B. Liu, F. L. Qu*, R. Y. Dai, L. M. Lu*, W. M. Wang, In-situ synthesis of hierarchically porouspolypyrrole@ZIF-8/graphene aerogels for enhancedelectrochemical sensing of 2, 2-methylenebis (4-chlorophenol), Electrochimica Acta, 2019, 311, 114-122.

[24] Y. Zhang, H. T. Du, Y. J. Ma, L. Ji, H. R. Guo, Z. Q. Tian, H. Y. Chen, H. Huang, G. W. Cui, A. M. Asiri, F. L. Qu*, L. Chen*, X. P. Sun*, Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3, Nano Res. 2019, 12, 919-924.

[25] M. Y. Xiong, Q. M. Rong, G. Z. Kong, C. Yang, Y. Zhao, F. L. Qu*, X. B. Zhang*, W. H. Tan, Hybridization chain reaction-based nanoprobe for cancer cell recognition and amplified photodynamic therapy, Chem. Commun., 2019, 55, 3065-3068.

[26] X. X. Guo, H. T. Du, F. L. Qu*, J. Li, Recent progress in electrocatalytic nitrogen reduction, J. Mater. Chem. A, 2019, 7, 3531-3543.

[27] W. S. Kong, X. Q. Luan, H. T. Du, L. Xia*, F. L. Qu*, Enhanced electrocatalytic activity of water oxidation in an alkaline medium via Fe doping in CoS2 nanosheets, Chem. Commun., 2019, 55, 2469-2472.

[28] W. S. Kong, Q. Q. Tan, H. Y. Guo, H. Sun, X. Qin*, F. L. Qu*, Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification, Microchimica Acta, 2019, 186, 73-80.

[29] X. Han, M. Han, L. Ma, F. Qu, R. M. Kong *, F. L. Qu*, Self-assembled gold nanoclusters for flfluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated flfluorescence resonance energy transfer, Talanta, 2019, 194, 55–62.

[30] H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu*, J. Li. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale, 2018, 10, 21617-21624.

[31] H. T. Du, X. X. Guo, R. M. Kong*, F. L. Qu*, Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, Chem. Commun., 2018, 54, 12848-12851.

[32] Q. Q. Tan, R. R. Zhang, W. S. Kong, F. L. Qu*, L. M. Lu*, Ascorbic acid-loaded apoferritin assisted carbon dots-MnO2 nanocomposites for selective and sensitive detection of trypsin, ACS Applied Bio Mater., 2018, 1, 777-782.

[33] H. T. Du, R. M. Kong, F. L. Qu*, L. M. Lu*, Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in Ni3S2 nanosheet array, Chem. Commun., 2018, 54, 10100-10103.

[34] J. J. Luo, D. Zhao, M. H. Yang*, F. L. Qu*, Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose, Microchimica Acta, 2018, 185, 229-234.

[35] L. Ma, X. Han, L. Xia, R. M. Kong *, F. L. Qu *, A G-triplex based molecular beacon for label-free fluorescence “turn-on” detection of bleomycin, Anayst, 2018, 143, 5474-5480.

[36] X. P. Zhang, R. M. Kong, H. T. Du, L. Xia, F. L. Qu*, Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions, Chem. Commun., 2018, 54, 5323-5325.

[37] H. T. Du, L. Xia, S. Y. Zhu, F. Qu, F. L. Qu*, Al-doped Ni2P nanosheet array: a superior and durable electrocatalyst for alkaline hydrogen evolution, Chem. Commun., 2018, 54, 2894-2897.

[38] X. X. Guo, S. Y. Zhu, R. M. Kong, X. P. Zhang, F. L. Qu*, Fe (TCNQ)2 nanorod array: a conductive non  noble-metal electrocatalyst toward water oxidation in alkaline media, ACS Sustain. Chem. Eng., 2018, 6, 1545-1549.

[39] Q. Q. Tan, R. R. Zhang, R. M. Kong, W. S. Kong, W. Z. Zhao, F. L. Qu*, Detection of glutathione based on MnO2-nanosheets-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter, Microchimica Acta, 2018, 185, 44-50.

[40] X. P. Zhang, S. Y. Zhu, L. Xia, C. D. Si, F. Qu, F. L. Qu*, Ni (OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity, Chem. Commun., 2018, 54, 1201-1204.

[41] X. P. Zhang, W. D. Sun, H. T. Du, R. M. Kong*, F. L. Qu*, A Co-MOF nanosheet array as a high

performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes, Inorg. Chem. Front.,2018, 5, 344-347.

[42] X. X. Guo, R. M. Kong, X. P. Zhang, H. T. Du, F. L. Qu*, Ni (OH)2 nanopaticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction, ACS Catal., 2018, 8, 651-655.

[43] Y. Zhao, J. Gong, X. B. Zhang, R. M. Kong, F. L. Qu*, Enhanced biosensing platform constructed using urchin-like ZnO-Au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies, Sens. Actuators B: Chem., 2018, 255, 1753-1761.

[44] H. T. Du, X. P. Zhang, Q. Q. Tan, R. M. Kong, F. L. Qu*, Cu3P-CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reaction, Chem. Commun., 2017, 53, 12012-12015.

[45] X. P. Zhang, C. D. Si, X. X. Guo, R. M. Kong, F. L. Qu*, A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions, J. Mater. Chem. A, 2017, 5, 17211-17215.

[46] H. W. Liu, X. X. Hu, K. Li, Y. Liu, Q. M. Rong, L. M. Zhu, L. Yuan, F. L. Qu*, X. B. Zhang*, W. H. Tan, A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy, Chem. Sci., 2017, 8, 7689-7695.

[47] S. Xu, H. W. Liu, X. X. Hu, S. Y. Huan*, J. Zhang, Y. C. Liu, L. Yuan, F. L. Qu*, X. B. Zhang*, W. H. Tan, Visualization of endoplasmic reticulum aminopeptidase under different redox conditions with a two-photon fluorescent probe, Anal. Chem., 2017, 89, 7641-7648.

[48] L. Cui, D. N. Liu, S. Hao, F. L. Qu*, G. Du, J. Q. Liu, A. M. Asiri, X. P. Sun*In situ electrochemical surface derivation of cobalt phosphate from a Co(CO3)0.5(OH)·0.11H2O nanoarray for efficient water oxidation in neutral solution, Nanoscale, 2017, 9, 3752-3756.

[49] X. Q. Ji, L. Cui, D. N. Liu, S. Hao, J. Q. Liu, F. L. Qu*, Y. J. Ma, G. Du, A. M. Asiri, X. P. Sun*, A nickel  borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water, Chem.Commun., 2017, 53, 3070-3073.

[50] L. Cui, F. L. Qu*, J. Q. Liu, G. Du, A. M. Asiri, X. P. Sun*, Interconnected network of shell-core co-bi  pi@cop for efficient water oxidation electrocatalysis under near neutral conditions, ChemSusChem, 2017, 10, 1370-1374.

[51] R. M. Kong, X. B. Zhang, L. Ding, D. S. Yang, F. L. Qu*, Label-free fluorescence turn-on aptasensor for prostate specific antigen sensing based on aggregation-induced emission–silica nanospheres, Anal. Bioanal. Chem, 2017, 409, 5757-5765.

[52] X. P. Zhang, R. R. Zhang, A. J. Yang, Q. Wang, R. M. Kong, F. L. Qu*, Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite, Microchimica Acta, 2017, 184, 4367-4374.

[53] X. B. Zhang, R. M. Kong*, Q. Q. Tan, F. Qu, F. L. Qu*, A label-free fluorescence turn-on assay for glutathione detection by using MnO2 nanosheets assisted aggregation-induced emission-silica nanospheres, Talanta, 2017, 169, 1-7.

[54] R. M. Kong, Y. Zhao, Y. Q. Zheng, F. L. Qu*, Facile synthesis of ZnO/CdS@ZIF-8 core-shell

nanocomposites and their applications in photocatalytic degradation of organic dyes, RSC Adv., 2017, 7, 31365-31371.

[55] F. L. Qu, H. M. Pei, R. M. Kong, S. Y. Zhu, L. Xia*, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets, Talanta, 2017,165, 136-142.

[56] F. L. Qu, L. Xia*, C. X. Wu, L. J. Liu, G. L. Li, J. M. You*, Sensitive and accurate determination of sialic acids in serum with the aid of dispersive solid-phase extraction using the zirconium-based MOF of UiO-66-NH2 as sorbent, RSC Adv., 2016, 6, 64895-64901.

[57] F. L. Qu, M. H. Yang*, A. Rasooly*, Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the alzheimer’s related protease β-Secretase, Anal. Chem., 2016, 88, 10559-10565.

[58] H. M. Pei, Y. Q. Zheng, R. M. Kong, L. Xia, F. L. Qu*, Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission, Biosens. Bioelectron., 2016, 85, 76-82.

[59] Y. Zhao, Y. Wang, X. B. Zhang, R. M. Kong, L. Xia, F. L. Qu*, Cascade enzymatic catalysis in

poly(acrylicacid) brushes nanospherical silica for glucose detection, Talanta, 2016, 155, 265-271.

[60] Y. Zhao, Y. Q. Zheng, R. M. Kong, L. Xia, F. L. Qu*, Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly (acrylic acid) brushes for protein biomarker detection, Biosens. Bioelectron., 2016, 75, 383-388.

[61] J. J. Luo, A. Rasooly, L. Q. Wang, K. Zeng, C. C. Shen, P. Qian, M. H. Yang*, F. L. Qu*, Fluorescent turn  on determination of the activity of peptidases using peptide templated gold nanoclusters, Microchimica Acta, 2016, 183, 605-610.

[62] C. Y. Zhao, L. J. Ma, J. M. You, F. L. Qu*, R. D. Priestley, EDTA- and amine-functionalized graphene oxide as sorbents for Ni (II) Removal, Desalin. Water. Treat, 2016, 57, 8942-8951.

[63] H. M. Pei, S. Y. Zhu, M. H. Yang, R. M. Kong, Y. Q. Zheng, F. L. Qu*, Graphene oxide quantum

dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen, Biosens. Bioelectron., 2015, 74, 909-914.

[64] Y. Zhao, Y. Q. Zheng, C. Y. Zhao, J. M. You, F. L. Qu*, Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immune detection of carbohydrate antigen125, Biosens. Bioelectron., 2015, 71, 200-206.

[65] R. M. Kong, L. Ding, Z. J. Wang, J. M. You, F. L. Qu*, A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen, Anal. Bioanal. Chem., 2015, 407, 369-377.

[66] Y. Zhao, Y. W. Yeh, R. Liu, J. M. You, F. L. Qu*, Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst, Solid State Sci., 2015, 45, 9-14.

[67] F. L. Qu, Y. Zhang, A. Rasooly, M. H. Yang*, Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix, Anal. Chem., 2014, 86, 973-976.

[68] R. M. Kong, T. Fu, N. N. Sun, F. L. Qu*, S. F. Zhang, X. B. Zhang, Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase, Biosens. Bioelectron., 2013, 50, 351-355.

[69] L. Ding, J. M. You, R. M. Kong, F. L. Qu*, Signal amplification strategy for sensitive immunoassay of prostate specific antigen (PSA) based on ferrocene incorporated polystyrene spheres, Anal. Chim. Acta, 2013, 793, 19-25.

[70] C. C. Wang, L. Ding, F. L. Qu*, Sensitive electrochemical immunosensor for platelet-derived growth factor in serum with electron transfer mediated by gold nanoparticles initiated silver enhancement, Measurement, 2013, 46, 279-283.

[71] K. J. Feng, R. M. Kong, S. F. Zhang, F. L. Qu*, A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification, Biosens. Bioelectron., 2012, 38, 121-125.

[72] F. L. Qu, H. Y. Sun, Y. Zhang, H. M. Lu, M. H. Yang*, Electrochemically deposited Pd nanorod array/sol–gel silica thin film for the fabrication of electrochemical sensors, Sens. Actuators B: Chem., 2012, 166, 837-841.

[73] H. Y. Sun, J. M. You, M. H. Yang*, F. L. Qu*, Synthesis of Pt/Fe3O4–CeO2 catalyst with improved

electrocatalytic activity for methanol oxidation, J. Power Sources, 2012, 205, 231-234.

[74] F. L. Qu, H. Y. Sun, S. F. Zhang, J. M. You, M. H. Yang*, Electrochemical sensing platform based on palladium modified ceria nanoparticles, Electrochim. Acta, 2012, 61, 173-178.

[75] H. Y. Sun, S. G. Zhao, F. L. Qu*, Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode, Measurement, 2012, 45, 1111-1113.

[76] S. F. Zhang*, B. P. Ling, F. L. Qu*, X. J. Sun, Investigation on the interaction between luteolin and calf thymus DNA by spectroscopic techniques, Spectrochim. Acta Part A, 2012, 97, 521-525.

[77] F. L. Qu, R. Nasraoui, M. Etienne, Y. B. Côme, A. Kuhn, J. Lenz, J. Gajdzik, R. Hempelmann, A. Walcarius*, Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes, Electrochem.Commun., 2011, 13, 138-142.

[78] F. L. Qu, T. Li, M. H. Yang*, Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide, Biosens. Bioelectron., 2011, 26, 3927-3931.

[79] F. L. Qu, H. M. Lu, M. H. Yang*, C. Y. Deng, Electrochemical immunosensor based on electron transfer mediated by grapheme oxide initiated silver enhancement, Biosens. Bioelectron., 2011, 26, 4810-4814.

[80] H. Li, Q. Wei, G. L. Wang, M. H. Yang*, F. L. Qu*, Z. Y. Qian, Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine functionalized iron oxide nanoparticles, Biosens. Bioelectron., 2011, 26, 3044-3049.

[81] L. M. Lu, H. B. Li, F. L. Qu*, X. B. Zhang*, G. L. Shen, R. Q. Yu, In-situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose, Biosens. Bioelectron., 2011, 26, 3500-3504.

[82] F. L. Qu, M. H. Yang, G. L. Shen*, R. Q. Yu. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis, Biosens. Bioelectron., 2007, 22, 1749-1755.

[83] F. L. Qu, M. H. Yang, J. H. Jiang, K. J. Feng, G. L. Shen*, R. Q. Yu. Novel poly (neutral red) nanowire as a sensitive electrochemical biosensing platform for hydrogen peroxide determination, Electrochem. Commun.,2007, 9, 2596-2600.

[84] F. L. Qu, A. W. Shi, M. H. Yang, J. H. Jiang, G. L. Shen*, R. Q. Yu. Preparation and characterization of prussian blue nanowire array and bioapplication for glucose biosensing, Anal. Chim. Acta, 2007, 605, 28-33.

[85] F. L. Qu, M. H. Yang, Y. S. Lu, G. L. Shen*, R. Q. Yu. Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA, Anal. Bioanal. Chem., 2006, 386, 228-234.[86] F. L. Qu, M. H. Yang, J. W. Chen, G. L. Shen*, R. Q. Yu. Amperometric biosensors for glucose based on layer-by-layer assembled functionalized carbon nanotube and poly (neutral red) multilayer film, Anal. Lett., 2006, 39, 1785-1799.

[87] F. L. Qu, M. H. Yang, J. H. Jiang, G. L. Shen*, R. Q. Yu. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film, Anal. Biochem., 2005, 344, 108-114.

已授权国家发明专利

[1] 渠凤丽,孙海宜,田雪. Pd 纳米棒阵列/溶胶凝胶膜修饰电极的制备方法和应用. 专利号:ZL 201210059096.X

[2] 渠凤丽,尤进茂,丁露. 一种聚苯乙烯包覆二茂铁微球的制备方法和应用. 专利号:ZL201310274516.0

[3] 渠凤丽,赵岩. 一种空壳型聚多巴胺吸附纳米金复合材料及其制备和应用. 专利号:ZL201410394378.4

[4] 渠凤丽,赵岩. 一种纳米金复合材料免疫传感器的制备方法及应用. 专利号:ZL201510071326.8

[5] 渠凤丽,赵岩. 一种二茂铁/氧化石墨烯/溶胶-凝胶硅膜及其制备方法和葡萄糖生物传感. 专利号:ZL 201510145898.6

[6] 渠凤丽,张小宾,赵岩,裴海盟,杜慧同. 一种 SiO2-DNA 纳米材料及其制备方法和应. 专利号:ZL 201610322262.9

[7] 渠凤丽,赵岩,张小宾,裴海盟. 一种 ZnO-Au @ CdS 光电复合材料及其制备方法和应. 专利号:ZL 201610301476.8

[8] 渠凤丽,裴海盟,赵岩,张小宾荧光碳点 CDs 溶液、CDs-MnO2 复合材料及其制备方法和应用. 专利号:ZL 201610300884.1

[9] 渠凤丽,谭青青,裴海盟. 氨基化介孔二氧化硅-葡萄糖-二氧化锰纳米复合材料及其制备应用. 专利号:ZL 201710040594.2

[10] 渠凤丽,张晓萍. ZnO-CdS@Au 纳米复合材料及其应用. 专利号:ZL201611257038.2

[11] 渠凤丽,杜慧同,孔荣梅,谭青青. ZnO-CdS 复合材料及其制备方法和应用. 专利号:ZL201611163931.9

 

关闭窗口